Solution 3

1. Let f be a 2π -periodic function integrable on $[-\pi, \pi]$ whose Fourier series is the zero function. Show that

(a)

$$\int_{-\pi}^{\pi} f(x)g(x) \, dx = 0 \, ,$$

for all continuous, 2π -periodic functions g.

(b)

$$\int_{-\pi}^{\pi} f(x)s(x)\,dx = 0$$

for all step functions s, and

(c) Deduce that f = 0 almost everywhere.

Solution

(a) The vanishing of all Fourier coefficients means that

$$\int_{-\pi}^{\pi} f(x)T(x)\,dx = 0,$$

for all trigonometric polynomial T. By Weierstrass Approximation theorem every continuous, 2π -periodic function can be approximated by trigonometric polynomials in sup-norm. It follows that

$$\int_{-\pi}^{\pi} f(x)g(x)\,dx = 0,$$

for all g.

(b) It is easy to see that we can approximate a step function s by a continuous function g. More precisely, given $\varepsilon > 0$, there is some continuous g such that

$$\int_{-\pi}^{\pi} |s(x) - g(x)| \, dx < \varepsilon.$$

Using this observation, one can show that

$$\int_{-\pi}^{\pi} f(x)s(x)\,dx = 0$$

for all step functions.

- (c) From (2) we deduce that $\int_{-\pi}^{\pi} f^2(x) dx = 0$, hence f(x) = 0 almost everywhere.
- 2. Show that the "Fourier map" $f \mapsto \hat{f}(n) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ satisfies $\hat{f} = \hat{g}$ if and only if f = g almost everywhere.

Solution It follows from the previous problem by replacing f by f - g.

3. Prove Hölder's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1 and q conjugate to p,

$$|\mathbf{x} \cdot \mathbf{y}| \le \left(\sum_{j=1}^n |x_j|^p\right)^{1/p} \left(\sum_{j=1}^n |y_j|^q\right)^{1/q}$$

.

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

Solution. Dividing [0, 1] equally into n many subintervals I_j and set $f(x) = x_j$, $g(x) = y_j$, for $x \in (x_j, x_{j+1}]$, Hölder's inequality for vectors follows from the same inequality for f and g.

4. Prove Minkowski's Inequality in vector form: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, p > 1,

$$\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p .$$

You may prove it directly or deduce it from its integral form by choosing suitable functions f and g.

Solution. Same as in the previous problem.

5. Prove the generalized Hölder's Inequality: For $f_1, f_2, \dots, f_n \in R[a, b]$,

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n}| dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}}\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}|^{p_{2}}\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n}|^{p_{n}}\right)^{1/p_{n}} ,$$

where

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n} = 1, \quad p_1, p_2, \dots, p_n > 1.$$

Solution. Induction on n. n = 2 is the original Hölder, so it holds. Let

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{n+1}} = 1$$
.

First, using the original Hölder, we have

$$\int_{a}^{b} |f_{1}f_{2}\cdots f_{n+1}| \, dx \leq \left(\int_{a}^{b} |f_{1}|^{p_{1}} \, dx\right)^{1/p_{1}} \left(\int_{a}^{b} |f_{2}\cdots f_{n+1}|^{q} \, dx\right)^{1/q} \, ,$$

where q is conjugate to p_1 . It is easy to see

$$1 = \frac{q}{p_2} + \dots + \frac{q}{p_{n+1}} \; .$$

By induction hypothesis,

$$\int_{a}^{b} |f_{2}^{q} \cdots f_{n}^{q}| \, dx \leq \left(\int_{a}^{b} |f_{2}|^{p_{2}} \, dx\right)^{1/p_{2}} \cdots \left(\int_{a}^{b} |f_{n+1}|^{p_{n+1}} \, dx\right)^{1/p_{n+1}}$$

,

,

done.

(a)

6. Show that for $1 \leq p < r \leq \infty$,

$$\|\mathbf{x}\|_p \le n^{\frac{1}{p} - \frac{1}{r}} \|\mathbf{x}\|_r$$

(b)

$$\|\mathbf{x}\|_r \le n^{\frac{1}{r}} \|\mathbf{x}\|_p.$$

Solution. (a)

$$\|\mathbf{x}\|_{p}^{p} = \sum |x_{j}|^{p}$$

$$\leq \left(\sum_{r=1}^{\infty} |x_{j}|^{p} \right)^{\frac{p}{r}} \left(\sum_{r=1}^{\infty} 1^{\frac{r}{r-p}}\right)^{\frac{r-p}{r}}$$

$$= n^{\frac{r-p}{r}} \|\mathbf{x}\|_{r}^{p}$$

 \mathbf{SO}

$$\|\mathbf{x}\|_p \le n^{\frac{1}{p} - \frac{1}{r}} \|\mathbf{x}\|_r .$$

(b) First of all, $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_p$. Then,

$$\begin{aligned} \|\mathbf{x}\|_r &\leq (n\|\mathbf{x}\|_{\infty}^r)^{\frac{1}{r}} \\ &\leq n^{\frac{1}{r}}\|\mathbf{x}\|_{\infty} \\ &\leq n^{\frac{1}{r}}\|\mathbf{x}\|_p \,. \end{aligned}$$

7. Establish the inequality, for $f \in R[a, b]$, $||f||_p \leq C ||f||_r$ when $1 \leq p < r$ for some constant C.

Solution By Holder's Inequality,

$$\int_{a}^{b} |f|^{p} \le \left(\int_{a}^{b} 1 \, dx\right)^{1-p/r} \left(\int_{a}^{b} |f|^{p\frac{r}{p}} \, dx\right)^{p/r} \le C \|f\|_{r}^{p}$$

where

$$C = (b-a)^{\frac{1}{p} - \frac{1}{r}}$$
.

8. Show that there is no constant C such that $||f||_2 \leq C ||f||_1$ for all $f \in C[0, 1]$. Solution Consider the sequence

$$f_n(x) = \begin{cases} -n^3 x + n, & x \in [0, 1/n^2], \\ 0, & x \in (1/n^2, 1]. \end{cases}$$

We have $||f_n||_1 = 1/(2n) \to 0$ as $n \to \infty$, but $||f_n||_2 = 1/3$ for all n. Hence, it is impossible to have some C satisfying $||f||_2 \le C||f||_1$ for all f.

Note. In general, it is impossible to find a constant C such that $||f||_r \leq C ||f||_p, p < r$, for all f.

9. Show that $\|\cdot\|_p$ is no longer a norm on \mathbb{R}^n for $p \in (0,1)$.

Solution Again (N3) is bad. Consider two functions $f = \chi_{[0,1/2]}$ and $g = \chi_{[1/2,1]}$. We have $||f + g||_p = 1$ but $||f||_p = ||g||_p = 2^{-1/p}$, so $||f + g||_p > ||f||_p + ||g||_p$. Although f and g are not continuous, we could find continuous approximations to these functions with the same effect.

10. In a metric space (X, d), its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_{∞} and d_1 on \mathbb{R}^2 .

Solution. The unit ball $B_1^2(0)$ is the standard one, the unit ball in d_{∞} -metric consists of points (x, y) either |x| or |y| is equal to 1 and $|x|, |y| \leq 1$, so $B_1^{\infty}(0)$ is the unit square. The unit ball $B_1^1(0)$ consists of points (x, y) satisfying $|x|+|y| \leq 1$, so the boundary is described by the curves $x + y = 1, x, y \geq 0$, $x - y = 1, x \geq 0, y \leq 0, -x + y = 1, x \leq 0, y \geq 0$, and $-x - y = 1, x, y \leq 0$. The result is the tilted square with vertices at (1,0), (0,1), (-1,0) and (0,-1).